【数据蒋堂】第27期:非常规聚合-九游会登陆

发布时间:2017-10-24 分类:数据蒋堂 tag:,

sjjt-27

标准sql中提供了五种最常用的聚合运算:sum/count/avg/min/max。观察这几个运算,我们发现它们都可以看成是一个以集合为参数返回单值的函数,我们就先把这个共同点理解为聚合运算的定义,把集合变成单值,多个值变成一个值,也就是发生了”聚合“,所以叫聚合运算。

那么很显然,有集合的时候就可以应用聚合运算了,所以sum/count这些运算可以针对一个数据表(记录集合)实施。

分组运算的结果是一批分组子集,那么每个子集上也可以应用聚合运算,这也就是sql的分组运算了。其实针对全集的聚合运算也可以理解为只分了一个组的特殊分组(也是个完全划分),这样理解后,我们可以认为聚合运算总是发生在分组运算之后(但分组运算后不一定总有聚合运算,前面已说过)。而且,还可以反过来说,只要被认定为是聚合运算(符合前述定义的运算),就一定可以用在分组之后。我们在下面会看到,这个理解将大幅度地扩展分组 聚合运算的应用范围。

除了这五种聚合运算外,有的数据库还提供了方差、标准差等聚合函数,其性质和这五种差不多,可以称为是常规的聚合运算。我们下面来研究业务上有意义的其它形式聚合运算。

1. 返回记录

上述的常规聚合都是针对数值的运算,特别地,对于结构化数据来说,是针对某个字段(或表达式)的运算,返回值也是这些数值的运算结果。但有时候我们关心的不是结果数值本身,而是与结果数值相关的信息。

比如我们想从日志表中找出某个用户第一次登录时用的ip地址,而不是登录时刻。用标准sql写这个运算大概是这样:

select ip_address from  logtable where user=? and logintime=
(select min(logintime) from logtable where user=?)

用子查询先计算出该用户的第一次登录的时刻,再查找出该时刻时用到的ip地址,这要把数据集遍历两次。

oracle提供了一个keep函数,可以不用子查询写出这样的运算:

select min(ip_address) keep(dense_rank   first order by logintime) from logtable where user=?

但是,我们关心的可能还不止是ip地址,还可能是日志表中的其它字段,比如所用浏览器、是否移动端等,其实就是关心最小值对应的那条完整记录。而由于sql缺乏离散性,即使有keep函数,也不容易写出这种运算,要么每个字段分别用keep,要么还是用子查询遍历两次,都很繁琐。

 

如果有一个用于返回最大值/最小值对应记录而非值本身的聚合函数,那这个运算写起来就简单了,也只要遍历一次:

=logtable.select(user=?).minp(logintime)

像前面说的,这样的聚合运算还可以用在group中,比如找出每个用户首次登录的日志记录

=logtable.group(user).(~.minp(logintime))

类似地,还可以有maxp方法用于返回最大值对应记录。

日志记录常常本来就是按事件发生时刻有序,利用这个特点时就不需要再用比较来计算最小值了,而是直接取出第一条即可。

=logtable.select(user=?).first()   // 聚合函数first返回第1个成员

在分组中也可以:

=logtable.group(user).(~.first())

当然实际编码时也可以直接取集合成员,这里写成first只是为了强调可以把取某成员的动作理解为一种聚合运算。

这种运算较为常用,我们可以为group函数做一个选项:

=logtable.group@1(user)

sql建立在无序集合概念上,无法保证返回记录的次序,想写出这种运算就又需要人为制造序号后再用过滤条件来做。

2. 返回集合

我们把上面的问题改一下:找出一群人中年龄最小的那些人的姓名。

和前述问题不同的是,同一个用户不会有多个相同的登录时间,但一批人中则可能有年龄相同的人,年龄最小的人可能不止一个。minp函数的返回值应当是一个集合才合理。

仔细观察我们在文章开始对聚合运算的定义,我们会发现,其实返回单值的要求并无必要,只要参数是集合,随便返回什么东西都可以认定为是聚合运算,这种定义下,返回集合的minp/maxp仍然可以作为聚合运算处理。

需要返回集合的聚合运算中,更常见是topn。

sql并不把topn理解成一种聚合运算,而只是返回结果集时的一种修饰符。原理上,sql会先把完整的结果集计算出来,然后再只取前n条返回。topn总是在排序动作之后,大集合的排序是个时间成本很高的动作,但其实只做topn并不需要全集的排序。这时候只能依靠数据库在工程上的优化,但这并不是总能做好的。另外,只作为结果集的修饰,那就不能把这个运算实施到分组子集上了,而且运算复杂化后优化也很难做了。

把topn理解成聚合运算后,一切都变得很轻松

=a=logtable.select(user=?).top(logingtime,-2), a(2)-a(1) //某用户最后的两次登录时间间隔
=logtable.groups(user;(a=~.top(logintime,-2),a(2)-a(1)))  //每个用户最后的两次登录时间间隔

而且实施计算也不需要刻意地工程上优化,在分组后使用也能获得高性能。

topn也有返回记录的情况,即取出某个字段(表达式)在前n名的对应记录。和minp/maxp类似地,这需要再设计一个函数。

同样的,有序情况也会发生,像前面的日志计算,如果假定日志表已经针对事件时刻有序,那可以不必再用topn去做比较运算了。

=a=logtable.select(user=?).last(2),a(2)-a(1)   //聚合函数last(n)返回最后n个成员

=logtable.groups(user;(a=~.last(2),a(2)-a(1)))

类似地,last函数也可以写成取集合成员的形式。

这里讨论了非常规聚合的两种常见情况,都是sql不易支持的。当然按照定义还会有更多形式的聚合运算,即使这两种情况也还会有许多变种,比如取出排序位置居中的成员、取出针对某一字段的唯一值(distinct)集合等。深入理解聚合运算及其与分组运算的关系,将能够扩展这些运算的应用范围,对计算的描述和实施都有不小的意义。

网站地图